

Geomorphometry 2025 Perugia

DEM Generalization Tool

Using Grid-Based Quadric Error Metric

Richard Feciskanin

Jozef Minár

Motivation

Need for generalized model

- Working with highly detailed and accurate (LiDAR) DEMs
- Smoothing has become a very common procedure

Need for high level of generalization

- Some applications require a high level of generalization, e.g., surface segmentation
- Creating a highly generalized model that retains essential land surface features is difficult

Rethinking TIN and Grid

Polygonal (TIN-based) simplification is beneficial

- Can represent major geomorphic structures bounded by distinct edges
- Some algorithms produce near-optimal triangles for surface representation
- However, a grid structure is needed for calculations

Grid version of polygonal algorithm?

Original Algorithm – TIN

Original Quadric Error Metric (QEM) Simplification

- Uses triangle planes from the surrounding area to encode surface shape $\rightarrow Q$ matrix
- Collapses edges to vertices $(V_0 V_1 \rightarrow V)$ to simplify the model while combining Q matrices $Q_0 + Q_1 = Q$
- Uses an error metric to order edge collapses and calculate the optimal vertex position

Grid constraints

- Replace the edge collapse procedure with an alternative method to combine Q matrices
- Determine the optimal position while keeping x, y fixed

Modified Algorithm – Grid

Initial calculation of *Q* matrix

- Derived from 8 triangles with 8 nodes around a grid node
- 4×4 symmetric matrix (10 coefficients)

Combining Q matrices

- Performing focal operation
- Neighborhood averaging \rightarrow new *Q* matrix

Calculating the new elevation

- Optimizes the error quadratic function based on Q
- Finds *z* with the minimum error for fixed *x* and *y*

 $Q = egin{bmatrix} a & b & c & d \ b & e & f & g \ c & f & h & i \ d & g & i & j \end{bmatrix}$

Generalization step 🔁

$$z=-rac{cx+fy+i}{h}$$

Modified Algorithm – Grid

QEM error evaluation

- Crucial for maintaining significant land surface features
- Allows restricting neighborhood nodes based on error values
- Using only nodes with a similar surface shape helps retain edges—places with significant changes
- Threshold error value for restricting the neighborhood affects the amount of edge preservation

Threshold Implementation

Relative threshold value

- Error values depend on resolution, surface shape, roughness, and other factors the absolute error is not a suitable metric
- Based on all values from the last step, determined by selecting a chosen percentile
- Repeated with an increasing percentile, up to 100%
- Mimics the original approach with edge collapse ordering

Tuning parameter

- Sharpness parameter (0–9)
- Setting the starting percentile: 1 (0.1 × sharpness)

Implementation

QEM Generalization

- Command-line tool
- Rust programming language
- Parallelized calculations

\$ qem_generalization --input-file dem.tif --output-file generalize_20_s_5.tif --iterations 20 --sharpness 5

Github repository

https://github.com/xiceph/physical-geomorphometry-tools/tree/main/generalization

Inputs

DEM Grid (GeoTIFF)

Iterations

- Basic parameter for generalization level
- Higher \rightarrow greater level of generalization

Sharpness

- Higher \rightarrow improves edge retention
- Needs more iteration to generalize
- **Resolution Reduction**
- Jobs (number of threads to use)

Comparison

Comparing 3 algorithms

- **QEM Generalization**
- Gaussian Filter
- Feature Preserving Smoothing
- Share common properties
- Equal level of generalization

Comparison

Depth of forms

- Visible differences
- a Input DEM
- b QEM Generalization
- c Gaussian Filter
- d Feature Preserving Smoothing

Web Service

We offer web computational service

- No need to install
- File size and pixels count restriction
- Currently in test mode

Input DEM (GeoTIFF) ①	
Drag the file here or click to upload	
Number of iterations ①	
10	$\hat{\mathbf{v}}$
Sharpness (0-9) ()	
5	~
Reduction factor (j)	
1	$\hat{\mathbf{v}}$
Run	

https://geomorphometry.fns.uniba.sk/calc-service/generalization

Further Reference

The referenced paper provides deeper theoretical insights

Feciskanin, R., Minár, J. (2025). *Advancing raster DEM generalization with a quadric error metric approach*. Computers and Geosciences, 202, 105963. https://doi.org/10.1016/j.cageo.2025.105963.

Contact

Richard Feciskanin

richard.feciskanin@uniba.sk

Jozef Minár jozef.minar@uniba.sk

Department of Physical Geography and Geoinformatics

Bratislava

FACULTY OF NATURAL SCIENCES Comenius University

Geomorphometry 2025 15/15