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Abstract— After the Geomorphometry 2023 meeting where the 
draft DEMIX report was discussed we have prosecuted the relevant 
research in four directions. First one is to establish an analytical 
relationship between DEM accuracy and cell size. We were able to 
show that this is possible, but it depends on the selected 
interpolation rule. Such choice is not intrinsic to the DEM as a 
dataset, and thus it is outside the DEM producer control. Second 
one is to do something similar for partial derivatives, leading to 
slope accuracy constrains in terms of elevation accuracy and cell 
size. Third one is regarding roughness, and the findings will be 
presented in Geomorphometry 2025. The relationship between 
early operational definitions of roughness within DEMIX and 
partial derivatives of the topographical surface was established. In 
general it is a function of the first and second order partial 
derivatives, but we show that with little effort they might be tied to 
just second order ones. The fourth one will presented also in 
Geomorphometry 2025. It describes ongoing work about the direct 
use of LiDAR datasets to estimate partial derivatives of the surface 
and its uncertainty at irregularly located points. We will show that 
we can go beyond, allowing to control the uncertainty by 
automatically changing the slope computation algorithm. 

I.  INTRODUCTION  
The DEMIX initiative [1] conducted a comparison exercise 

between global DEM of 1 arc second resolution. The task was 
organized in three sub groups (SG1, SG2 and SG3). This 
communication describes some research carried out after the end 
of activities of SG2 reported at the JRC Technical Report [2].  

II. ERROR BUDGET FOR ELEVATION  
Modern DEM offer higher resolution (smaller cell size) and 

higher accuracy as well. However, despite reasonable to have 
one, no closed form relationship links both. Early attempts only 

presented empirical proposals, certainly validated by 
experiments. In [3] we established analytically such relationship 
for the traditional elevation accuracy RMSE metric, showing 
some limitations of the empirical proposals. We were able to 
prove that the accuracy as MSE is bounded by the sum of a 
constant term and some monomial of the cell size h. Given the 
interpolation method the power exponent is a constant and the 
monomial coefficients dependent on certain terrain 
characteristics. The coefficients are computable. As a practical 
application, to produce a DEM with prescribed accuracy the 
operator can either decide the cell size for a given instrument, or 
tune the instrument accuracy for a given cell size.  

To ease the analysis we choose to use as the preferred 
quantity the squared RMSE (thus, MSE hereinafter). After some 
detailed analysis involving Taylor expansions around control 
points the general relationship found is 

 ( ) 2
model data 1 2

p pMSE MSE C h C h≤ + +e  (1)
We use the model suffix to denote the union of the raw data 

in raster format (the DEM) together with the chosen interpolation 
algorithm. The left hand side is the intended squared accuracy of 
the DEM+interpolation algorithm. It is bounded by the sum of 
three non-negative terms. The first one is the MSE of the grid 
elevation values themselves. It can only be computed when the 
control points are exactly located over the grid points. Notice 
that, provided the elevations are compared to reference ones 
exactly located at the same places, there is no interpolation 
degradation. Let’s collect the grid value differences to a reference 
in a vector named e. If the elevation values are perfect, the vector 
norm is zero. Back to Eq. 1: its second term vanishes when the 
norm of e is zero. Otherwise, the second term evolves as certain 
power p of the cell size h. A third term, which does not vanish for 
perfect elevation data, evolves as a power of h with exponent 2p. 
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The value of p is equal to 1 for the case of Nearest Neighbor 
interpolation, and is equal to 2 for the Bilinear interpolation. If, as 
in DEMIX, all control points are located exactly on grid nodes, 
no interpolation will be required and the bound is simply the first 
term. Otherwise the three term model should be applied. 
Coefficients C2 can be estimated from available data, because it 
is a function of the partial derivatives of the topographic surface. 
On the contrary, coefficient C1(e) requires not only partial 
derivative estimates but also knowing the elevation error at 
selected grid nodes. They are usually not available so such term 
is only retained for theoretical reasons. 

Other interpolation methods (Radial Base Functions, Kriging, 
Inverse Distance Weighting, etc.) were not considered because 
they are not exact for polynomials surfaces. 

The case of DEMIX is too special, because no interpolation 
algorithm is involved. It should be desirable that DEM producers 
report precisely such first term. Things change when the control 
points are not located precisely over grid points. The practical 
consequence of Eq. 1 is to help restrict the value of h in order to 
attain a prescribed accuracy. Even with perfect elevation values, 
if the cell size of the DEM is too large its accuracy will be also 
large. We are here concerned to confirm the accuracy 
requirements for a DEM to be considered as a reference, which 
(according to Eq. 1) also poses restrictions on its cell size. To be 
a reference dataset their accuracy as RMSE must satisfy  

 / 3ref candRMSE RMSE≤  (2)
We use the suffix ref for reference and cand for candidate. 

After squaring both terms we find a relationship between their 
MSE, with a 1/9 factor. It can be assumed that the unknown 
coefficient C2 stands the same both for reference and candidate 
DEM. On the contrary, it is not so clear the situation with C1(e). 
Under the assumption that it is similar we can try to verify that 
the 1/9 factor holds for each of three terms.  

Eq. 1 applies also to the reference dataset. Its reported 
accuracy should have been computed w.r.t. to independent 
reference data, which for example might be located anywhere in 
the domain. Thus, from Eq. 1 we know that its dataset accuracy is 
bounded from above by the reported accuracy. In a worst case 
scenario, we can assume that such reference dataset accuracy is 
smaller than the candidate dataset accuracy for a factor of at least 
1/3, so the first term is smaller by a factor of 1/9. The second 
term is linear in h. Assuming that the coefficient C1(e) is similar, 
we can request that the reference h should be smaller to the 
candidate h by a factor of 1/9 in the case of Nearest Neighbor 
interpolant (p=1), but it will suffices to be 1/3 if we use the 
Bilinear interpolant (p=2). The requirement for h due to the third 
term will be automatically satisfied.  

Thus, in the general case where the interpolant to be used is 
unknown, the worst situation requires that the reference dataset 
has a resolution h smaller by 1/9 to the one of the candidate set. 

The requirement could be relaxed by using a more sophisticated 
interpolant. In the particular case of DEMIX the interpolant does 
not play a role provided both the grid of the reference dataset 
overlap with the candidate one, and the elevations themselves are 
accurate enough.  

III. ERROR BUDGET FOR PARTIAL DERIVATIVES  
Within DEMIX the accuracy has been computed using as 

reference values those available from higher resolution, higher 
accuracy DEMs exactly at the grid points. It was assumed that 
the partial derivatives computed from there are automatically 
suitable reference values. However, there were reasons to cast 
doubts so a formal development was carried out. The conclusion 
is the following expression, which relates the MSE of the partial 
derivative in terms of the MSE of the elevation data and the cell 
size 

 
2

0 1 2* * * *p p
derivative data dataMSE C MSE C MSE h C h≤ + +

 
(3)

As before, there are three non-negative terms. The first one is 
only dependent on the elevation accuracy of the reference 
dataset, and is independent of the cell size. The second one 
vanishes either when the cell size goes down to zero or the 
elevation dataset is perfect. The third one is independent on the 
elevation accuracy, and is affected by a known power of the cell 
size. The coefficient is not readily computable, because it is 
affected by both the shape of the topographical surface as well as 
the error surface. If the partial derivatives are estimated with the 
Evans-Young formulae [4] then the value of p is 2. 

Given that the bound is valid either for the reference dataset 
or the candidate dataset, it is possible to check its mutual 
relationship. As before, the relationship between their MSE 
should have a 1/9 factor. Assuming that the unknown coefficients 
C0, C1 and C2 stands the same both for reference and candidate 
dataset we can try to verify that the 1/9 factor holds for each three 
terms.  

The relationship for the first term is trivially satisfied. For the 
second we should request that 

 1 1* * * * / 9p p
ref ref cand candC MSE h C MSE h≤  (4)

which leads to 

 1*
9

p

ref ref

cand cand

MSE h
MSE h

⎞⎛
≤⎟⎜ ⎟

⎝ ⎠
 (5)

 

First factor is less than 1/3, so it will be enough if the second 
one is also less than 1/3 
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 Thus, for p equal to 2 it will be enough that href is less than 
half the hcand. With such a request, the third term automatically 
satisfies the 1/9 relationship, thus establishing a feasible 
requirement for the derivatives computed from the higher 
resolution, higher accuracy reference dataset. 

The abovementioned requirement ignores the scale effect, 
which manifest itself because the derivative estimates using very 
different cell size h are not readily comparable. This is a well 
known problem and we will not address it here. The problem are 
still under analysis, so no final conclusion have yet been offered. 

IV. ESTABLISHING A RELATIONSHIP BETWEEN PROPERTIES 
OF THE TOPOGRAPHIC SURFACE AND ROUGHNESS AS COMPUTED 

Within DEMIX it was proposed from the inception that 
accuracy criteria will involve not only the traditional elevation 
one, but also slope and roughness. Early operational definition of 
roughness involves the standard deviation of slope estimates 
taken over a 3x3 window [5]. Using criteria like the Evans-
Young [4] this involves in practice a 5x5 window. As presented, 
this was an algorithmic definition, explaining how to compute it. 
But it is not a formal definition, relating the attained value to 
other properties of the topographic surface. Despite this might 
not be a real concern for elevation data defined over a regular 
grid, it left undefined how to compute the same roughness using 
other elevation dataset formats like TIN, contour lines, or even 
from sparse elevation values coming from LiDAR or field 
survey. This is different from other magnitudes, like slope, which 
can be computed and can be comparable in any dataset formats 

The final DEMIX choice was not to use roughness computed 
over a 5x5 window but over a 7x7 one, but anyway we will 
present here our results. After a cumbersome Taylor expansion of 
the elevation around the central point and taking the limit when 
the cell size goes down to zero we were able to prove that the 
roughness defined as the standard deviation of the slope 
estimated over 9 points of a 3x3 window is a function of both 
first and second partial derivatives taken at the central point. 
Unfortunately, its expression changes if the slope at the central 
point is zero or not. Since this is cumbersome, we considered 
other options. One alternative for the roughness definition were 
also informally considered during the task. It proposes using the 
standard deviation of the slope computed over a detrended 
elevation dataset. The trend was estimated using a tangent plane 
going through the central point. With such modification, we were 
able to prove that the roughness is now independent of the first 
order derivative at the central point, and remains a function of 
just the second derivative ones.  

The suggested approximation for the roughness using a finite 
h is only first order accurate. However, once we have defined it 

in terms of the second order partial derivatives we can resort to 
other options. Florinsky [6] proposed estimates for higher order 
derivatives of the topographical surface using a 5x5 windows. In 
[7] it has been proved that the estimates are fourth order accurate 
w.r.t. the cell size. If they are inserted in the formal definition of 
roughness the new estimate becomes also higher-than-one order 
accurate. That opens the door to produce an uncertainty estimate 
as the absolute difference between the given operational value 
and the last one suggested. In turn, that paves the way to develop 
a criteria to accept/deny the reference roughness value coming 
from a higher resolution, higher accuracy DEM, provided that 
scale effects are neglected. I envision a workaround to properly 
cope with the scale effects, but this has yet not fully developed. 

V. BEYOND ESTIMATE: A PATH TO NOT JUST ESTIMATE BUT 
TO CONTROL SLOPE UNCERTAINTY 

In [7], and also motivated by DEMIX activities, it has been 
presented a procedure able to assess the contribution of finite 
value h cell size to the uncertainty of the partial derivatives 
estimates. In general, the uncertainty is bounded by the absolute 
value of the difference between numbers computed from high 
and low order formulae. The order is a property of the formulae, 
and in the paper a number of popular algorithms were analyzed. 
It was concluded that most of them are of second order, and 
among the set only the one by Jones [8] is of first order while the 
one due to Florinsky [6] is of fourth order. The conclusions of [7] 
are only valid for elevations defined over a regular grid, since all 
the methods considered are tied to such data organization.  

While considering an extension of such analysis to elevation 
data coming from LiDAR it becomes apparent that something 
else can be done. The activity is part of an ongoing project, 
supported by the Spanish government. The goal of [7] was just to 
estimate the uncertainty, given that the partial derivative 
themselves are available. For LiDAR there are not such 
formulae, so we need to start from the beginning. To address the 
issue we established a new connection to the partial differential 
equations (PDE) literature. Despite developed independently, all 
the traditional formulae like Evans-Young [4], Horn [9], Jones 
[8], Florinsky [6], etc. are indeed particular cases of the Finite 
Difference approach. In the PDE literature, a first step to find a 
solution is to declare as unknown the function value at every grid 
point. As a second step the partial derivatives are estimated in 
terms of those unknowns. After that, what is known as the Strong 
Form Approach requires that the PDE itself is then imposed to 
the partial derivatives producing a nonlinear equation to be 
satisfied at every cell point. The solution arises after finding 
function values that satisfy such equation, at least approximately. 
In the Numerical Analysis community the procedure is deemed 
incomplete unless an error/uncertainty estimate is offered, so 
procedures like the ones presented in [7] are essential to satisfy 
such need. If the value of the uncertainty estimate is above a 
prescribed tolerance, the cell size is diminished and the procedure 



López-Vázquez, C. LatinGEO Lab 

  4 

repeated until necessary. Thus, the concept of control of the 
committed uncertainty is central to the whole procedure. As it is 
a deterministic context, the PDE literature usually use the name 
error for what here we will denote as uncertainty. 

Aside from the Finite Difference approach which operates 
over regular grids, other ones were developed. In particular, the 
so called Mesh-Free or Meshless methods. They again use as 
unknowns the function values defined over a cloud of points not 
regularly located. They support also the Strong Form Approach. 
Algorithms to estimate the partial derivatives are embedded in 
the codes, as well as its error/uncertainty estimates. Again, 
imposing the PDE creates algebraic nonlinear equations to be 
solved. Once solved, they also produce an uncertainty estimate. If 
the uncertainty is within tolerance, the solution is accepted. If 
not, something needs to be done. The novelty of these methods is 
that, unlike the Finite Difference ones, the cloud of points might 
not be easily expanded by adjusting just one parameter like the 
cell size. Instead, the point location might be defined a priori. 
The LiDAR placement of points is a good example of such 
situation. There is no possibility to add extra points. The alternate 
solution applied by the Meshless approach is to produce a more 
accurate partial derivative estimate by somewhat arbitrarily 
increasing its accuracy order. Notice that for most of the 
traditional methods mentioned for the regular grid the order was 
constant. In the Meshless approach the partial derivative 
estimation method order is increased as needed. This is possible 
for irregular located data values, and it is also possible for regular 
ones (see, for example, [10]). This assertion is valid for partial 
derivatives of any order. I am not aware why such alternative is 
not commonly used in geomorphometry even for regular grids, 
considering progressively second, fourth and higher order 
estimates until a prescribed low uncertainty is achieved.  

VI. CONCLUSIONS 
• We have developed an analytical relationship between 

DEM accuracy and the cell size. The relationship 
explicitly requires considering the interpolation method, a 
fact not strictly tied to the data. This has implications for 
data producers as well as data users. In the DEMIX 
context we are able to specify requirements for DEMs 
intended to operate as a reference. 

• We have developed an analytical relationship between the 
partial derivative accuracy and both the elevation 
accuracy and the cell size.  

• We have found the analytical, exact expression, relating 
the two different definitions of roughness to local partial 
derivatives. It has been shown that the limit value of the 
roughness for the second definition only involve second 
order derivatives. 

• Future works might develop more refined uncertainty 
estimates which properly deal with scale issues.  
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